1. 1 Refrain Anan Ryoko
  2. 2 镇命歌 -しずめうた- 瀧沢一留
  3. 3 Pure SCHAT10(影)
  4. 4 Lemon Soda NGC 3.14/Tenkitsune
  5. 5 summer vibe Cyan Lpegd
  6. 6 DJ Okawari - Flower Dance(钢琴原版) Oturans
  7. 7 花降らし n-buna/初音ミク
  8. 8 Lemon 米津玄師
  9. 9 明けない夜、醒めない夢 Yunomi
  10. 10 ニゲラの花束 鎖那
  11. 11 ひだまりの郷 八乙女葦菜
  12. 12 Pneumatic Tokyo EnV
  13. 13 摘星座的女孩 Rainbowets
summer vibe - Cyan Lpegd
00:00 / 00:00
An audio error has occurred, player will skip forward in 2 seconds.

hdu 4763 Theme Section 题解

题意简述

请你在一个字符串S中找到最大的k,使得存在长度为k的前缀,后缀和子串,三者没有一点交集,且字符串值相等。算法必须线性(数据水,网上会被卡成n^2的算法也过了)(这是全网为数不多几个严格线性的题解)

思路框架

建一颗fail树。然后用树上操作解决问题。

具体思路

我们用KMP中的fail数组建一颗树,从ifaili连一条边。不难发现,0就是根节点。

然后,我们先解决问题的几个部分解决。

前缀=后缀

前缀等于后缀并且位置不相等(即:长度不是n)。那满足条件的长度一定在n号节点(不含)到根节点(含)的路径上。我们知道,S中满足前缀=后缀的长度就是fail[n],fail[fail[n]]…0。也就是从n到根的路径了。

前缀=某个子串

然后我们要找到一个子串和它们相等。(S的)子串,就是(某个)前缀的(某个)后缀。而(某个)前缀的(某个)前缀还是(S的)前缀。

所以,如果S的一个以i结尾的子串和S的某个前缀相等,这个长度一定在i到根的路径上。

合并

那么我们发现三者相等。所以,这个要求的长度,即在i到根的路径上,也在n到根的路径上。那么它就在inLCA到根的路径上。

稍微一想,长度最长,就是LCA最深。我们要求LCA最深,有这样一个方法:给每个点一个点权,初始为0。然后从n1的路径上都加上1。对于每个i,我们询问i到根路径上点权的和,就是inLCA的深度。然后我们只需要维护一个树上前缀和,然后找到前缀和最大的位置即珂。

别忘了三者不能有相交

那咋整嘛。首先,前缀,后缀还有子串不能相交,那么长度就小于等于n的三分之一。由于我们我们在用上面的方法给点权+1的时候,判一下这个点的编号是否小于n的三分之一,如果满足,那才+1。

然后我们找到LCA之后,不断判断LCA的长度是否小于n的三分之一,如果小于就跳fail。当然,我们在找LCA的时候,由于只有一组数据,我们也是一样的找法。用代码写,就是:

1
while(LCA上点权为0) 跳fail;

然后LCA就是我们要求的最长长度了。记得要判一下无解。

时间复杂度

我们发现,我们刚刚说到了这样几个操作:

  1. 求字符串的fail
  2. 树上一条链加值
  3. 树上求前缀和

这些都是O(n)完成的操作。所以我们的算法是严格O(n)的,连log都不带。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <bits/stdc++.h>
using namespace std;
namespace Flandre_Scarlet
{
#define N 1666666
#define F(i,l,r) for(int i=l;i<=r;++i)
#define D(i,r,l) for(int i=r;i>=l;--i)
#define Fs(i,l,r,c) for(int i=l;i<=r;c)
#define Ds(i,r,l,c) for(int i=r;i>=l;c)
#define Tra(i,u) for(int i=G.Start(u),__v=G.To(i);~i;i=G.Next(i),__v=G.To(i))
#define MEM(x,a) memset(x,a,sizeof(x))
#define FK(x) MEM(x,0)

char s[N];int n;
void Input()
{
scanf("%s",s+1);n=strlen(s+1);
}

int fail[N];
void GetFail()
{
fail[1]=0;
F(i,2,n)
{
int j=fail[i-1];
while(s[j+1]!=s[i] and j) j=fail[j];
if (s[j+1]==s[i]) ++j;
fail[i]=j;
}
}
int val[N],rsum[N];//点权,点权的前缀和
void Soviet()
{
F(i,0,n+5) fail[i]=val[i]=rsum[i]=0;
GetFail();//fail[i]是树上i节点的父亲
int pos=n;
while(pos) {{if (pos*3<=n) val[pos]=1;}pos=fail[pos];} //求出点权
F(i,1,n) rsum[i]=rsum[fail[i]]+val[i];//维护前缀和

int Max=0;
F(i,2,n-1)//注意是2到n-1。当然你也珂以认为是n*1/3到n*2/3
{
if (!val[i]) if (rsum[i]>rsum[Max]) Max=i; //求出最深的LCA
}

if (rsum[Max]==0) {puts("0");return;}//判无解
int LCA=Max;
while(!val[LCA]) LCA=fail[LCA];//这里会死循环吗?
printf("%d\n",LCA);
}

#define Flan void
Flan IsMyWife()
{
int t;cin>>t;
while(t--)
{
Input();
Soviet();
}
}
}
int main()
{
Flandre_Scarlet::IsMyWife();
getchar();getchar();
return 0;
}

代码中的问题答案:不会,因为显然val[0]=1.

w